

GOES I-IM On-Orbit Storage

John Fiorello/CSC
Doug McCuistion/NASA (presenter)

GOES: Chronology of Coverage

NASA/NOAA GEOSYNCH CHRONOLOGY

ATS-1, 2, 3

SMS

GOES Spinners

GOES D-H

GOES 3-Axis

GOES I-M

GOES N-Q

Advanced Studies

GOES Products for Forecasting

-Z Axis Precession (ZAP) Storage Spin-up & Dynamics

- Spacecraft powered down to eclipse configuration:
 - » Gyros (initial spin-up only)
 - » Attiude Control Electronics and Telemetry & Command equipment on
 - » Magnetic Torquers for additional spin control
 - » Heaters
- Solar Array slewed to 151⁰
 - » Two slews
 - » Sun Acquisition Mode commanded between slews
- Orient spacecraft principle axis to sun
- Coordinated thruster firings to initiate spin

ZAP Mode Performance (1/2)

• 0.75% sec roll about major principle axis of inertia (23.8% off Z)

- Return to normal on-orbit mode extremely simple
 - » Sequence of sun acq/roll earth acq/station keeping utilized routinely
 - » Payload accomodations necessary before returning to operations

ZAP Mode Performance (2/2)

Instrument Telescope's rapid cool-down

Solar Array power cycles with ZAP spin

Ground AGC is cyclic in ZAP spin

Spin Precession Requires Re-spins

- Principle Axis/Body Frame Axis angular seperation causes precession from initial coning angle relative to sun
- GOES-10 precessed at 0.40/day on initial activation
 - » At this rate, respin required every ~50 days
 - » Reductions possible with better Solar Array positioning relative to the sun
- Respin execution identical to initial spin but without Solar Array repositioning.
 - » First execution of respin successful
 - Precession rate reduced to
 0.35% (~ 60 day respin)

• Pseudo-telemetry "automates" monitoring

- T&C System (GIMTACS) algorithms developed and implemented for autonomous telemetry monitoring:
 - » Predict spin rate
 - » Predict T&C nulls, compare to actual ground system nulls; alarm if anomalous
 - » Predict sun coning angles from course sun sensor output and alarm if $>20^{\circ}$
 - » Predict eclipse entry & exit (automation of eclipse configurations)
 - » Detect anomalous solar array power and alarm if anomalous
 - » Detect loss of command link, and alarm
 - » Calculate spacecraft true local time
- 13 new pseudo-telemetry points added for these functions
- Staffing reduced from 3 full- to 1 part-time operators (per S/C)
 - Operational GOES Engineer monitors Storage S/C console
 - Full team required only for respins

- Pseudo-TLM points reduce real-time monitoring
- All TLM archived for analysis/trending
- No immediate action contingencies eliminate quick reaction responses
- Minimal ground resources required, leaving redundancy intact
 - One ground antenna (only for command link testing)
 - One GIMTACS stream

ZAP STORAGE PROVIDES FLEXIBILITY

- On-orbit asset state-of-health and launch ques may result in a fourth GOES on orbit next year
- GOES-L (to be GOES-11) can be stored with minimal impact to ground resources
- Required operating mode of GOES N-Q (next generation)
- Incorporation of an Expert System for satellite state-of-health modelling will assist on-line operators in monitoring multiple stored spacecraft, with added safety

The Future of GOES On-Orbit Storage (2/3)

Generic Spacecraft Analyst's Assistant (GenSAA) for nearterm automation of on-orbit storage

GenSAA Data Manager & User Interface

The Future of GOES On-Orbit Storage (3/3)

